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By the accommodation of modified BINOLs as chiral lig-
ands, enantioselectivities in the bis-titanium chiral Lewis
acid catalyzed 1,3-dipolar cycloaddition of N-diphenylmethyl
nitrones and methacrolein could be improved.

In the field of asymmetric Lewis acid catalysis, 1,1′-binaphthyl-
2,2′-diol (BINOL) is one of the best known privileged ligands
having axial chirality, and has been successfully applied in a great
number of enantioselective reactions.1 It is also known that the
introduction of an electron-withdrawing group at 6,6′-position of
BINOL affects the reactivity and enantioselectivity by changing
the Lewis acidity and the chiral environment of the catalyst.2–4

In our recent study, the oxygen-bridged bis-titanium chiral Lewis
acid (S,S)-1a (X = H, Fig. 1) containing BINOL ligands has
been revealed to catalyze some asymmetric reactions, such as
asymmetric allylation and 1,3-dipolar cycloaddition of nitrones.5

We report herein a detailed study of the 6,6′-substituent effect of
BINOL in our catalytic system, which led to the identification of
a new highly efficient catalyst.

Fig. 1 Oxygen-bridged bis-titanium chiral Lewis acid (S,S)-1.

In our previous work, we have demonstrated that 1,3-dipolar
cycloaddition of C-phenyl N-diphenylmethyl nitrone 2a and
methacrolein catalyzed by (S,S)-1a proceeded smoothly, giving
the endo-cycloadduct as a single regioisomer with 90% ee (Table 1,
entry 1). Furthermore, use of (S,S)-1b containing 6,6′-I2-BINOL
exhibited the enhanced reactivity and enantioselectivity compared
to (S,S)-1a (entry 2).5d,e However, in the reaction of some
other nitrones and methacrolein, (S,S)-1b catalyzed 1,3-dipolar
cycloaddition was found to be still impractical, giving the products
with less than 90% ee. In this context, we set out the investigation
of other modified BINOLs having an electron-withdrawing group
at 6,6′-positions to develop a more efficient catalyst.6,7
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Table 1 Screening of 6,6′-substituent of the BINOL moiety in (S,S)-
1 catalyzed asymmetric 1,3-dipolar cycloaddition of C-phenyl N-
diphenylmethyl nitrone and methacroleina

Entry X Yield (%)b Ee (%)c

1 H (S,S)-1a 58 90
2 I (S,S)-1b 80 93
3 Cl (S,S)-1c 44 94
4 Br (S,S)-1d 76 90
5 CF3 (S,S)-1e 84 97

a The reaction with nitrone and methacrolein (3 equiv.) was carried out
in the presence of 10 mol% of (S,S)-1. b Isolated yield. c Determined by
HPLC analysis by chiral columns after reducing the aldehyde moiety.

Attachment of chlorine as 6,6′-substituent resulted in dimin-
ished yield and slightly higher enantioselectivity (entry 3). Use
of catalyst (S,S)-1d composed of the 6,6′-Br2-BINOL ligand led
to the deterioration of both yield and enantioselectivity (entry 4).
Upon further investigation, the introduction of the trifluoromethyl
group at 6,6′-position of BINOL was found to be optimal, giving
the cycloadduct in 84% yield and 97% ee (entry 5).

With the promising catalyst (S,S)-1e in hand, we then ex-
amined the scope of 1,3-dipolar cycloaddition of various N-
diphenylmethyl nitrones and methacrolein as shown in Table 2.
The reaction with nitrones bearing a 3- or 4-tolyl group gave the
corresponding cycloadducts with 97% ee and 94% ee, respectively
(entries 2 and 3), which were better than the results obtained
by the use of (S,S)-1b (Table 2, in parentheses). In the case of
nitrone 2d bearing the electron-withdrawing group, an increase
in enantiomeric excess was also observed (entry 4). The use of
C-cyclopentenyl nitrone 2e provided the cycloadduct with the
excellent level of enantioselectivity (entry 5). The remarkable
increase of the enantioselectivity was observed in the reaction of
nitrone 2f containing a substituted styryl moiety, although the ee
still remained at a moderate level (entry 6).

We then moved our attention to the accommodation of this
successful system to the reaction using crotonaldehyde as dipo-
larophile. Compared to the previous report using (S,S)-1a or
(S,S)-1b, the clear superiority of (S,S)-1e was observed. Thus, the
cycloadduct with three consecutive stereocenters could be isolated
in 81% with 96% ee (Scheme 1).

To demonstrate the synthetic utility, the facile transformation
of the so-obtained oxazolidine into the b-amino acid ester having
a quaternary center at the a-position was implemented. First, the
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Table 2 Asymmetric 1,3-dipolar cycloaddition of various nitrones and
methacrolein catalyzed by (S,S)-1ea

Entry R Yield (%)b Ee (%)c ,d

1 2a 84 97 (93)

2 2b 75 97 (96)

3 2c 76 94 (88)

4e 2d 42 91 (88)

5 2e 41 93 (88)

6 2f 70 83 (70)

a The reaction with nitrone and methacrolein (3 equiv.) was carried out
in the presence of 10 mol% (S,S)-1e. b Isolated yield. c Determined by
HPLC analysis by chiral columns after reducing the aldehyde moiety.
d Ee in parentheses indicates the result obtained by the use of (S,S)-1b.
e Performed with 20 mol% (S,S)-1e.

Scheme 1 Asymmetric 1,3-dipolar cycloaddition of C-phenyl
N-diphenylmethyl nitrone and crotonaldehyde catalyzed by (S,S)-1.

aldehyde moiety of the cycloadduct was oxidized to the carboxylic
acid. Subsequent acidic treatment of this material led to the
concomitant esterification and removal of the N-diphenylmethyl
moiety, giving the ester 3 in moderate yield. The reductive cleavage
of the N–O bond provided the b-amino acid methyl ester 4 in high
yield (Scheme 2).8,9

In summary, we have developed a newly modified bis-titanium
chiral Lewis acid containing 6,6′-bis(trifluoromethyl)-BINOL
ligands.10 With this methodology, only one isomer of the cy-
cloadduct could be obtained exclusively, out of the possible 8
isomers (regioisomer, endo/exo isomer and enantiomer).

Scheme 2 Reagents and conditions: a) NaClO2, NaH2PO4,
2-methyl-2-butene, tBuOH, H2O, 87%; b) conc. HCl, MeOH, 59%;
c) Raney-Ni, H2 (balloon), MeOH, 93%.
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